The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter

نویسندگان

  • Yang Tan
  • Ramesh Y. Adhikari
  • Nikhil S. Malvankar
  • Joy E. Ward
  • Kelly P. Nevin
  • Trevor L. Woodard
  • Jessica A. Smith
  • Oona L. Snoeyenbos-West
  • Ashley E. Franks
  • Mark T. Tuominen
  • Derek R. Lovley
چکیده

Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the type IV pilus monomer, in Geobacter species revealed that the PilA sequence of Geobacter uraniireducens was much longer than that of G. sulfurreducens. This is of interest because it has been proposed that the relatively short PilA sequence of G. sulfurreducens is an important feature conferring conductivity to G. sulfurreducens pili. In order to investigate the properties of the G. uraniireducens pili in more detail, a strain of G. sulfurreducens that expressed pili comprised the PilA of G. uraniireducens was constructed. This strain, designated strain GUP, produced abundant pili, but generated low current densities and reduced Fe(III) very poorly. At pH 7, the conductivity of the G. uraniireducens pili was 3 × 10(-4) S/cm, much lower than the previously reported 5 × 10(-2) S/cm conductivity of G. sulfurreducens pili at the same pH. Consideration of the likely voltage difference across pili during Fe(III) oxide reduction suggested that G. sulfurreducens pili can readily accommodate maximum reported rates of respiration, but that G. uraniireducens pili are not sufficiently conductive to be an effective mediator of long-range electron transfer. In contrast to G. sulfurreducens and G. metallireducens, which require direct contact with Fe(III) oxides in order to reduce them, G. uraniireducens reduced Fe(III) oxides occluded within microporous beads, demonstrating that G. uraniireducens produces a soluble electron shuttle to facilitate Fe(III) oxide reduction. The results demonstrate that Geobacter species may differ substantially in their mechanisms for long-range electron transport and that it is important to have information beyond a phylogenetic affiliation in order to make conclusions about the mechanisms by which Geobacter species are transferring electrons to extracellular electron acceptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity

The electrically conductive pili (e-pili) of Geobacter sulfurreducens serve as a model for a novel strategy for long-range extracellular electron transfer. e-pili are also a new class of bioelectronic materials. However, the only other Geobacter pili previously studied, which were from G. uraniireducens, were poorly conductive. In order to obtain more information on the range of pili conductivi...

متن کامل

Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens

UNLABELLED It has been proposed that Geobacter sulfurreducens requires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain of G. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the am...

متن کامل

Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity.

The mechanisms for Fe(III) oxide reduction by Geobacter species are of interest because Geobacter species have been shown to play an important role in Fe(III) oxide reduction in a diversity of environments in which Fe(III) reduction is a geochemically significant process. Geobacter species specifically express pili during growth on Fe(III) oxide compared with growth on soluble chelated Fe(III),...

متن کامل

Predicting and Interpreting the Structure of Type IV Pilus of Electricigens by Molecular Dynamics Simulations.

Nanowires that transfer electrons to extracellular acceptors are important in organic matter degradation and nutrient cycling in the environment. Geobacter pili of the group of Type IV pilus are regarded as nanowire-like biological structures. However, determination of the structure of pili remains challenging due to the insolubility of monomers, presence of surface appendages, heterogeneity of...

متن کامل

Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili

The metallic-like electrical conductivity of Geobacter sulfurreducens pili has been documented with multiple lines of experimental evidence, but there is only a rudimentary understanding of the structural features which contribute to this novel mode of biological electron transport. In order to determine if it was feasible for the pilin monomers of G. sulfurreducens to assemble into a conductiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016